Zagorod50.ru

Загород №50
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как получить цементное тесто

Строй-справка.ру

Отопление, водоснабжение, канализация

Цементным тестом называют смесь цемента и воды. Густоту цементного теста (ГОСТ 310.3-76*) определяют на приборе Вика с пестиком (рис. 4.2, а).

Описание прибора. Основа прибора — подвижной металлический стержень с указателем. Стержень может быть закреплен на определенной высоте стопорным винтом, при освобождении которого стержень падает вниз. Шкала с делениями от 0 до 40 мм укреплена на станине. В нижнюю часть стержня вставляют изготовленный из нержавеющей стали пестик (рис. 4.2, б) с полированной поверхностью. При этом иглу (рис. 4.2, в) закрепляют в верхней части стержня прибора. Масса стержня с пестиком и иглой (300 + 2) г. Снизу на станину устанавливают стеклянную (или из другого коррозионно-стойкого материала) пластину 9 размером 100×100 мм и коническую форму-кольцо 8 (рис. 4.2, г).

Ход испытания. Перед началом испытания проверяют, свободно ли опускается металлический стержень прибора в направляющих втулках и, если необходимо, смазывают его маслом. Осматривают пестик и очищают его влажной тканью, а также проверяют положение указателя, который должен быть на нуле при опирании пестика о стеклянную пластинку. Кольцо и пластину смазывают тонким слоем машинного масла.

Рис. 4.2. Прибор Вика (а) и приспособления к нему (б—г):
1 — станина; 2 – стержень; 3 – шкала; 4 – игла; 5 – пестик; 6 указатель; 7 винт; кольцо; 9 — стеклянная пластина

Для приготовления цементного теста берут 400 г цемента и высыпают его в сферическую металлическую чашу (рис. 4.3, а), предварительно протертую влажной тканью. В цементе делают углубление, в которое в один прием выливают воду в количестве, необходимом (ориентировочно) для получения теста нормальной густоты. Обычно для первого пробного затворения берут 25…26% воды от массы цемента, т.е. около 100 мл. Воду отмеряют с погрешностью не более 0,5 мл. Углубление заполняют цементом с помощью стальной лопатки (рис. 4.3, б) и через 30 с после приливания воды сначала осторожно перемешивают, а затем энергично растирают тесто лопаткой. Общая продолжительность перемешивания и растирания 5 мин. Цементное тесто можно приготовить также на механической мешалке.

Рис. 4.3. Чаша для затворения (а) цементного теста и лопатка для перемешивания (б)

Готовое цементное тесто в один прием укладывают в кольцо, установленное на стеклянной пластинке, и 5…6 раз встряхивают его, постукивая пластину о поверхность стола. Избыток теста срезают увлажненным ножом. Затем кольцо на стеклянной пластине ставят под стержень прибора Вика и пестик приводят в соприкосновение с поверхностью теста в центре кольца. Закрепляют стержень стопорным винтом, после чего быстро освобождают его и дают возможность стержню с пестиком свободно погружаться в тесто. Через 30 с от начала погружения производят отсчет глубины погружения пестика по шкале прибора.

В том случае, если пестик не доходит до стеклянной пластины на 5… 7мм, густота теста считается нормальной. Если пестик погружается на большую или меньшую глубину, приготовляют новые порции цементного теста соответственно с меньшим или большим количеством воды. Количество воды для получения теста нормальной густоты, выражаемое в процентах от массы цемента, определяют с погрешностью не более 0,25%.

Большая Энциклопедия Нефти и Газа

Цементное тесто — нормальная густота

Цементное тесто нормальной густоты при испытании образцов должно равномерно изменяться в объе ме при кипячении в воде. [1]

Цементное тесто нормальной густоты готовят так же, как указано в § 3 А, использовав при этом найденное в этом опыте водоцементное отношение. Тесто приготовляют и наполняют им кольцо прибора так же, как указано в § 3А. Отсчитывающий время секундомер включают одновременно с затворением цемента водой. [2]

Для получения цементного теста нормальной густоты к ангидритовому вяжущему добавляют 30 — 40 % воды. Ангидритовое вяжущее можно применять для изготовления растворов и бетонов. Растворы из этого вяжущего употребляют для каменной кладки, штукатурки и производства теплоизоляционных материалов, а бетон — для бетонирования различных частей сооружений и производства строительных изделий, используемых в сухой среде. Ангидритовое вяжущее применяют для изготовления бесшовных полов и подготовок под линолеум. [3]

Для получения цементного теста Нормальной густоты ( ГОСТ 310 — 41) для различных портландцементов требуется от 24 до 30 % воды от веса цемента, причем на водопотребность оказывают влияние тонкость помола, присутствие в цементе гидравлической добавки и минералогический состав клинкера. [4]

Определить объем цементного теста нормальной густоты , полученный из 1 кг пуццоланового портландцемента. [5]

Определить объем цементного теста нормальной густоты , полученный из 1 кг портландцемента. [6]

Для получения цементного теста нормальной густоты ( ГОСТ 310 — 41) для различных портландцементов требуется от 24 до 30 % воды от веса цемента, причем на водопотребность оказывают влияние тонкость помола, присутствие в цементе гидравлической добавки и минералогический состав клинкера. [7]

Лепешки изготовляют из цементного теста нормальной густоты . На одно испытание достаточно затворить водой 350 — 400 г цемента. Из этого теста на технических весах отвешивают четыре порции по 75 г каждая, из которых вручную формуют шарики, попарно укладываемые на стеклянные или металлические пластинки, предварительно протертые машинным маслом. Пластинки с шариками легко встряхивают для того, чтобы шарики, расплываясь, превратились в лепешки диаметром 7 — 8 см. После этого поверхность лепешек заглаживают влажным шпателем или ножом, передвигая его по поверхности лепешки от края к центру и придавая таким образом лепешкам конусообразный вид. Все лепешки вместе с пластинами переносят на решетку в ванну, в которую предварительно налита вода, так чтобы уровень ее был несколько ниже решетки. В ванне лепешки выдерживают в течение 24 2 ч при 20 5 С ( или 293 К) После этого лепешки снимают с пла стинок и переносят на этажерку в бачок для испытания кипяче нием. Бачок наполняют водой, так чтобы уровень ее перекрывал лепешки на 4 — 6 см. Бачок закрывают крышкой, помещают на нагревательный прибор и доводят в нем воду до кипения. Чтобы во время кипячения уровень воды в бачке был постоянным, открывают кран и таким образом соединяют бачок со склянкой, наполненной водой до заданного уровня. Кипение воды поддерживают в течение 4 ч, затем нагревательный прибор выключают и лепешки охлаждают в ванне. По охлаждении их немедленно извлекают из воды и подвергают внешнему осмотру, на основании которого делают соответствующее заключение о качестве цемента в отношении равномерности изменения объема. [8]

Начало и конец схватывания, определяемые стандартным методом в цементном тесте нормальной густоты , отражают процесс гидратации цемента и развитие структуры цементного теста. [10]

НЦ обладает способностью к значительному расширению ( до 4 %) при твердении в состоянии цементного теста нормальной густоты . В железобетоне НЦ создает после отвердевания в арматуре ( независимо от ее расположения) предварительное напряжение. Этим свойством как функцией химической энергии цемента пользуются при изготовлении предварительно напряженных железобетонных конструкций вместо более сложного механического или термического напряжения арматуры. МПа, развиваемого при твердении НЦ в условиях ограничения свободного расширения, выделяют его разновидности НЦ-2, НЦ-4 и НЦ-6. Напрягающий цемент отличается также повышенными показателями водо — и газонепроницаемости, морозостойкости, прочности при растяжении и изгибе. Марки цемента — 400 и 500; определяются испытанием образцов-балочек из цементно-песчаного раствора 1: 1 в возрасте 28 суток. [11]

Водопотребность цемента определяется количеством воды ( % массы цемента), которое необходимо для получения цементного теста нормальной густоты . Начало схватывания цемента должно наступать не ранее чем через 45 мин, а конец — не позднее чем через 10 ч от начала затворения. Замедлителями схватывания портландцемента являются, наряду с гипсом, бура и борная кислота, фосфаты и нитраты калия, натрия и аммония. [12]

Водопотребность цемента определяется количеством воды ( в % от массы цемента), которое необходимо для получения цементного теста нормальной густоты . Нормальной густотой цементного теста считают такую его подвижность, при которой цилиндр-пестик прибора Вика, погруженный в кольцо, заполненное тестом, не доходит на 5 — 7 мм до пластинки, на которой установлено кольцо. [13]

По ГОСТ 310 — 60 определение равномерности изменения объема проводится на образцах в виде лепешек конусообразной формы высотой 1 см с диаметром основания 7 — 8 см, изготовленных из цементного теста нормальной густоты . [14]

Для этой цели отбирают пробу весом 200 — — 500 г и, затворяя на жидком стекле ( плотность 1 36 г / см3) без добавки кремнефто-ристого натрия, приготовляют цементное тесто нормальной густоты . [15]

Как получить цементное тесто

Для определения сроков схватывания и равномерности изменения объема цемент затворяют водой, количество которой определяют по стандартизированному показателю — нормальной густоте цементного теста. Этот показатель (или отношение В/Ц) для разных цементов колеблется в широких пределах (от 22 до 32%). По ГОСТ 310—60 показатель нормальной густоты надо определять на приборе Вика. Цементы с большей нормальной густотой имеют несколько большую водопотребность, что может сказаться на относительном снижении их строительно-технических свойств. Показатель нормальной густоты имеет более широкое значение, чем только для определения сроков схватывания и равномерности изменения объема. Этот показатель интересен для анализа свойств цемента и связан с техническими свойствами бетона, в частности влияет на определение показателя пластичности-жесткости смесей. Длительное вылеживание клинкеров при их смачивании дождем (снегом) резко снижает нормальную густоту цементного теста. Причины, вызывающие различную водопотребность цементов систематизированы.

Сочетание перечисленных факторов в разной степени отражается на изменении нормальной густоты. Рассмотрим, как каждая из указанных причин отражается на этом показателе и в чем причина такого изменения.

Минералогический состав. На нормальную густоту влияет минерал С3А, обладающий высокой водопотребностью. Следовательно, для получения цементного теста одинаковой пластичности из цементов с различным количеством минерала С3А требуется неодинаковое количество воды. Повышение нормальной густоты является косвенным показателем высокого содержания в цементе минерала С3А. Цементы с большим содержанием минерала С3А для некоторых бетонных и железобетонных конструкций и сооружений нельзя применять (например, в воде-среде, вызывающей сульфатную коррозию, при многократных попеременных замораживаниях и оттаиваниях, для напряженных конструкций, где ограничивается величина ползучести бетона и др.). На показатель нормальной густоты цемента меньше влияет присутствие силикатов кальция (минералов C3S и C2S).

Читать еще:  4 9 гигатонн цемента

Недостаток гипса в цементе. Наличие в цементе минерала С3А вызывает необходимость при размоле клинкера вводить гипс — регулятор сроков схватывания. В практике может встретиться случай, когда из-за разного содержания гипса цемент с большим количеством минерала С3А будет иметь более низкий показатель нормальной густоты. Сказанное подчеркивает важность как систематического лабораторного контроля качества при производстве цемента, так и контроля на строительстве при отсутствии на цемент технической документации — паспорта со сведениями.

Тонкость измельчения. Повышение тонкости помола цемента связано с некоторым увеличением количества воды затворения. В ряде случаев при изменении тонкости измельчения водопотребность цемента значительно растет, что связано с содержанием в цементе мелких зерен (мельче нескольких микрометров), а также структурными особенностями клинкера; при затворении цемента открывается большая часть минерала С3А, находящегося в клинкерных зернах. Однако тонкость измельчения существенно не влияет на показатель нормальной густоты. При измельчении клинкера на строительной площадке или эффективном домоле цемента на заводах сборного железобетона появляется много мелких фракций ниже 5 мкм, для затворения которых нужно большее количество воды, чем для крупных фракций цемента, и показатель нормальной густоты становится значительно выше. Это следует учитывать при организации работ, например не допускать сильного измельчения цемента, повышающего водопотребность, или для уплотнения смесей применять наиболее эффективные способы формования-уплотнения. Следует иметь в виду, что такие тонкомолотые цементы относятся к быстротвердеющим цементам, а при наличии в них повышенного количества минерала C3S и к высокопрочным (высокомарочным).

Лежалость цемента. Поверхность зерен цемента полиминеральна, отчего в разной степени подвержена изменению под воздействием воздушной среды. Практически все цементы выходят из помольных агрегатов (мельниц) с высокой температурой, на поверхности из зерен образуются продукты коррозии в виде очень тонкого слоя новообразований. Процесс образования такого слоя связан с наличием в воздухе С02 и паров воды. Исследования показали, что цемент после приготовления должен лежать минимальные сроки и качество его зависит от условий, в которых он хранится. Слеживание — потеря качества цемента происходит активнее при высокой относительной влажности воздуха (на берегах больших водоемов, в дождливый период). По этой причине для защиты цемента от слеживания поверхность зерен покрывают органической пленкой. Для частичного восстановления качества лежалого цемента нужен дополнительный домол, при котором зерна очищаются от слоя новообразований и раскалываются по новым поверхностям. Лежалый цемент имеет повышенную водопотребность из-за образования в нем агрегатов (флокул) из зерен, поверхность которых связана продуктами реакции минералов цемента с водой.

Случаи неправильного хранения цемента усугубляют сказанное о снижении качества цемента — увеличивают слеживаемость цемента.

Наличие гидравлических добавок. Гидравлические добавки имеют различный генезис, что отражается на их водоудерживающей способности. В зависимости от вида и количества гидравлической добавки изменяется нормальная густота цемента. Например, трепел, обладающий высокой молекулярной влагоемкостью, повышает нормальную густоту. Гидравлические добавки, рыхлые продукты изверженных пород, а также молотый песок, снижают показатель нормальной густоты, неплотные разности карбонатных пород (известняков и доломитизированных известняков), впитывая воду, увеличивают водопотребность цементного теста.

Наличие мелкомолотого гранулированного доменного шлака. Эта искусственно полученная гидравлическая добавка в силу своей природы снижает показатель нормальной густоты цемента, что значительно улучшает строительно-технические свойства шлакопортландцемента и позволяет получать бетонные (растворные) смеси заданной пластичности-жесткости при меньшем содержании в них воды.

Наличие поверхностно-активных добавок. Существенное корректирование ряда природных недостатков портландцемента достигается введением некоторых видов ПАВ. Наиболее высоких результатов достигают, вводя в цемент комплексную гидрофильно-гидрофобную добавку, что одновременно обеспечивает высокую яластифицируемость и гидрофобность цементного теста, т. е. способствует получению цементного теста с минимальным количеством воды затворения для заданной пластичности-жесткости. Следует помнить, что избыточное количество ПАВ тормозит химические процессы, протекающие между минералами зерен цемента и водой. В ряде случаев при значительном избытке ПАВ процесс твердения может быть задержан на многие годы, что может вызывать брак в работе. По этой причине для каждого ПАВ существуют оптимальные дозы добавки в цемент.

Перечисленные причины изменения нормальной густоты цемента наиболее существенны и их надо учитывать в практической работе. В одном случае они могут содействовать уменьшению показателя нормальной густоты и, следовательно, повышению строительно-технических свойств цемента, в другом — уменьшение нормальной густоты, достигнутое за счет сочетания иной группы причин, не окажет такого эффекта, как в первом случае. Действительно, нельзя считать показатель нормальной густоты однозначно связанным с качеством цементного камня, образующимся после твердения цементного теста. Тот или иной эффект — результат физико-химического процесса, протекающего в суспензии цементного теста на границе раздела жидкой (воды) и твердой фаз (поверхности зерен цемента). В одних случаях эти процессы идут быстрее, в других медленнее, что отражается на изменении показателя нормальной густоты. Из этих сведений можно сделать вывод, что изменением количества воды затворения нельзя ускорить химический процесс связывания воды, который зависит: от природы цемента, его тонкости помола (дисперсности), химического состава воды затворения и температуры процесса.

  • 1 |
  • 2 |
  • 3 |
  • 4 |
  • 5 |
  • 6 |
  • 7 |
  • 8 |
  • 9 |
  • 10 |
  • 11 |
  • 12 |
  • 13 |
  • 14 |
  • 15 |
  • 16 |
  • 17 |
  • 18 |
  • 19 |
  • 20 |
  • 21 |
  • 22 |
  • 23 |
  • 24 |
  • 25 |
  • 26 |
  • 27 |
  • 28 |
  • 29 |
  • 30 |
  • 31 |
  • 32 |
  • 33 |
  • 34 |
  • 35 |
  • 36 |
  • 37 |
  • 38 |
  • 39 |
  • 40 |
  • 41 |
  • 42 |
  • 43 |
  • 44 |
  • 45 |
  • 46 |
  • 47 |
  • 48 |
  • 49 |
  • 50 |
  • 51 |
  • 52 |
  • 53 |
  • 54 |
  • 55 |
  • 56 |
  • 57 |
  • 58 |
  • 59 |
  • 60 |
  • 61 |
  • 62 |
  • 63 |
  • 64 |
  • 65 |
  • 66 |
  • 67 |
  • 68 |
  • 69 |
  • 70 |
  • 71 |
  • 72

Для кого выпускается наша продукция и меры ее эксплуатации.

Как получить цементное тесто

К важнейшим техническим характеристикам портландцемента относятся плотность, тонкость помола, водопотребность, сроки схватывания, прочность и стойкость к коррозии.

Истинная плотность р цемента колеблется в пределах 3,05…3,15 г/см3. В среднем принимают р=3,1 г/см3.

Насыпная плотность порошка рн зависит от степени уплотнения. Для рыхлонасыпанного цемента она составляет 1,1 г/см3, сильно уплотненного — 1,6 г/см3. В расчетах принимают значение рн = 1,3 г/см3.

Тонкость помола цемента оказывает большое влияние на скорость его твердения, прочность. Тонкость помола портландцемента характеризуют его зерновым составом и удельной поверхностью. Зерновой состав определяют путем просеивания пробы цемента через сито с очень тонкими ячейками — 0,008 мм (80 мкм). Основная часть пробы (не менее 85%) должна пройти сквозь такое сито. Это означает, что современный портландцемент отличается очень тонким помолом, т. е. размер его зерен в среднем составляет 20…40 мкм. Удельная поверхность такого цемента 2500…3000 см2/г. Промышленность выпускает специальные цементы и более тонкого помола.

Водопотребность цемента отражает способность его частиц адсорбировать, т. е. поглощать, на поверхности определенное количество воды. Плотность зерен портландцемента 3,1 г/см3, воды — 1 г/см3. Если затворить цемент излишним количеством воды, то лишь некоторая часть ее будет удерживаться адсорбционными и капиллярными силами. Под действием гравитации частицы цемента оседают, а вода вытесняется вверх. Наступает расслоение теста, которое приводит к выделению излишней воды на поверхности бетонной смеси или раствора. Явление водоотделения крайне нежелательно, поскольку вода, скапливаясь на верхней поверхности конструкции, делает бетон рыхлым и пористым. Впоследствии бетон наиболее интенсивно разрушается именно в этих местах.

Водопотребность цемента характеризуют относительным количеством воды (в%) для получения цементного теста нормальной густоты. Содержание воды в тесте нормальной густоты соответствует ее максимальному количеству, которое цемент может удерживать с помощью химических и физико-химических (адсорбционных и капиллярных) сил. Поскольку в таком тесте еще нет водоотделения, цементное тесто нормальной густоты, скатываемое в шарик, не прилипает к ладони. Водопотребность портландцемента 22…28%.

Свойство водопотребности цемента имеет важное практическое значение при изготовлении бетонной смеси и раствора. Применяя цементы с низкой водо-потребностью, можно изготовить бетонную смесь с относительно небольшим расходом воды. При отвердевании получают бетон с высокой прочностью и стойкостью, так как пористость его невелика. Напротив, цементы с высокой водопотребностью, в частности пуццолановый портландцемент, у которого она достигает 40%, отличаются высокой пористостью, и бетон на основе такого цемента оказывается неморозостойким.

Сроки схватывания цемента характеризуют промежуток времени, в течение которого интенсивно изменяются пластические свойства цементного теста. Различают начало и конец схватывания. В строительной лаборатории сроки схватывания цемента определяют на приборе Вика по глубине погружения в цементное тесто стандартной стальной иглы диаметром 1,13 мм. Началом схватывания считается промежуток времени от затворения цемента водой до того момента, когда игла под действием силы тяжести уже не может полностью погрузиться в цементное тесто нормальной густоты (не доходит до дна прибора на 1… 2 мм). Конец схватывания отсчитывают по времени, прошедшему от затворения до момента, когда игла Вика лишь слегка, на 1…2 мм, погружается в затвердевшее тесто или камень.

На стройке можно определить сроки схватывания цемента упрощенным способом. Для этого на цементном тесте делают каждые 5 мин легкие надрезы стальным ножом. Начало схватывания соответствует моменту, когда надрезы перестают заплывать. Продолжая делать легкие, без нажима, надрезы с интервалом 15 мин, замечают, когда нож перестает оставлять след на поверхности цементного камня. Это и будет конец схватывания.

В соответствии с требованиями ГОСТ 10178—85 начало схватывания портландцемента должно наступать не ранее чем через 45 мин после затворения, конец схватывания — не позднее чем спустя 10 ч. Сроки схватывания портландцемента регулируют путем введения добавки гипса. На скорость схватывания цемента влияют температура и содержание воды в тесте. При повышении температуры сроки схватывания сокращаются. Поэтому для бетонных работ в сухую жаркую погоду применяют цемент, начало схватывания которого наступает не раньше чем через 1,5 ч после затворения. Если смесь укладывать после начала схватывания, то, утратив пластичность, она при укладке будет деформироваться с нарушением сплошности структуры. В результате в теле бетона образуются разрывы, трещины и другие дефекты механического происхождения, что отрицательно скажется на прочности и долговечности конструкции.

Читать еще:  Как легко сделать цемент

Также важно обеспечить заданные сроки схватывания при транспортировании бетонных смесей автобетоновозами, передвижными бетоносмесителями, перекачивании бетононасосами. Преждевременное схватывание может привести к выходу оборудования из строя, и будет непроизводительно потрачено время на приведение установок в работоспособное состояние.

Сроки схватывания увеличиваются, если для затворения цемента взято больше воды. При ее избытке возрастает объем пространства в тесте, которое должно быть заполнено новообразованиями. Прочность цементного камня формируется в момент, когда кристаллогидраты образуют пространственную непрерывную структуру. Для формирования такой структуры при большем объеме пространства требуется и большее время.

Увеличивать количество воды в тесте или бетонной смеси ради удлинения сроков схватывания нерационально, так как прочность затвердевшего камня (бетона) тем меньше, чем больше введено воды. Целесообразно применять для этого специальные добавки — замедлители схватывания.

В практике бетонных работ иногда наблюдается ложное схватывание цемента, т. е. загустевание цементного теста или бетонной смеси в сроки, гораздо более короткие, чем предусмотрено стандартом (раньше 45 мин). Это объясняется тем, что в состав такого цемента входит полуводный гипс, а не гипсовый камень. Полуводный гипс быстро взаимодействует с водой, образуя пространственную малопрочную структуру, что и приводит к потере пластичности цементного теста уже через 10…20 мин после затворения. При последующем перемешивании, особенно с небольшой добавкой воды, тесто восстанавливает пластичность и затвердевает, как обычно.

Чтобы не допустить ложного схватывания, помол и хранение цементов осуществляют при пониженной температуре. Во время бетонных работ в жаркое время года предельная температура цемента должна быть не более 50 °С.

Прочность—основная характеристика цемента как материала для изготовления бетонных и железобетонных конструкций. Для ее оценки используют стандартную характеристику цемента — марку. Чтобы определить марку цемента, изготовляют смесь из цемента и стандартного кварцевого песка в соотношении 1:3 по массе. Затворяют эту смесь водой, которую берут в количестве 40% от массы цемента. Из смеси изготовляют призматические образцы (балочки) размерами 40X40X160 мм. Первые сутки после изготовления балочки твердеют во влажном воздухе, а затем в течение 27 сут — в воде комнатной температуры. Через 28 сут балочки испытывают на изгиб, а образовавшиеся при этом половинки балочек — на сжатие. При испытании получают самые разнообразные показатели прочности. Например, предел прочности при сжатии образцов может оказаться равным 40; 41,2; 43; 46 МПа и т. д. Эти числа, характеризующие прочность, называют активностью цемента.

Бесконечное множество значений прочности, а значит, и активности затрудняет сравнение различных цементов. Поэтому оценивают прочность цемента с помощью марок. Марка цемента — это условная характеристика, численно равная минимальному пределу прочности при сжатии стандартных образцов. Например, марка цемента 400 означает, что предел прочности его при сжатии гарантируется не ниже 400 кгс/см2. Если при испытаниях получены значения прочности, большие 400 кгс/см2 (до 500), марка цемента все равно будет 400. Установлены стандартные марки портландцемента от 400 до 600 (табл. 10). Чем выше марка, тем более прочный камень образуется при твердении цемента.

Прочность цемента при соответствующих условиях внешней среды со временем возрастает (рис. 25). Нормальными условиями твердения цементных материалов (строительного раствора и бетона) считают

температуру около 20°С и относительную влажность воздуха 95—100%. При понижении температуры замедляются химические реакции взаимодействия цемента с водой. Это выражается в недоборе прочности (сравните кривые 1 и 2). Для ускорения твердения бетонные изделия обрабатывают насыщенным паром при температуре 60…90°С. Пропаривание позволяет за 10…12 ч получать распалубочную прочность бетона, составляющую 70% от проектной 28-суточной (кривая 3). Тепловую обработку изделий надо проводить в условиях, исключающих высушивание бетона, так как вода необходима для синтеза кристаллогидратов цементного камня. .

Возрастание прочности с течением времени — важное свойство цемента и материалов на его основе. Этим цементные материалы принципиально отличаются от других каменных материалов — природных (гранита, известняка) и искусственных (керамики, стекла), у которых однажды сформированная прочность может со временем под воздействием разрушительных факторов среды только уменьшаться.

Цемент же при благоприятных условиях твердения продолжает гидратироваться. В результате увеличивается объем кристаллического сростка гидратных новообразований, а объем промежутков между ними, наоборот, сокращается. Таким образом, физическая причина увеличения прочности связана с уменьшением пористости цементного камня. Снижая пористость, можно существенно повысить его прочность. Так, методом горячего прессования при температуре 250 °С и давлении 350 МПа в лабораториях получают цементный камень с небольшой пористостью (всего 2…4%) и очень высокой прочностью — через 1 сут Ясж — = 412 МПа, через 90 сут — 655 МПа. Это более чем в 10 раз превосходит самую высокую прочность цемента (60 МПа) и бетона (60.„80 МПа), получаемую при стандартных испытаниях. Следовательно, вяжущие свойства цемента используют далеко не.полностью.

Рис. 25. Кривые роста прочности цемента во времени:
1 — твердение при температуре 5 °С, 2 — нормальное твердение при 20 °С, 3 — пропаривание при 85 °С

Из-за развитой системы пор и капилляров цементный камень сравнительно легко проницаем для воды, агрессивных жидкостей и газов, которые могут вызвать его коррозию.

Стойкость к коррозии цементного камня характеризуется отношением его к химическим воздействиям, которые подразделяют на три основных вида.

Коррозия первого вида связана с разложением новообразований цементного камня, растворением и вымыванием (выщелачиванием) из него Са(ОН)2. Такая коррозия развивается наиболее интенсивно в мягких водах (дождевых, талых), содержащих небольшое количество солей. Под действием проникающих в бетон мягких вод растворяется наименее стойкое соединение Са(ОН)2. Вслед за этим разлагаются гидросиликаты и гидроалюминаты кальция. Наиболее эффективное средство борьбы с выщелачиванием — введение в состав цемента добавок, связывающих Са(ОН)2 в более стойкие соединения. Такие добавки, называемые активными минеральными, будут рассмотрены в § 25.

Коррозия второго вида обусловлена взаимодействием Са(ОН)2 и других составных частей цементного камня с агрессивными веществами внешней среды. В результате этого образуются легкорастворимые соединения, которые вымываются из цементного камня, тем самым ослабляя его. К этому виду относится, например, кислотная и магнезиальная коррозия.

Свободные кислоты встречаются в сточных водах промышленных предприятий. Кислотная среда может также возникнуть при конденсации на поверхности конструкций влаги, если в атмосфере содержатся агрессивные вещества — хлор, хлорид водорода, сернистый газ. Такая атмосфера характерна для современных промышленных центров. Попадающая в бетон кислота взаимодействует с Са(ОН)2. Образующийся при этом хлорид кальция легко растворяется в воде и вымывается.

Коррозия третьего вида характеризуется тем, что в результате взаимодействия со средой в порах цементного камня возникают новые твердофазные соединения, объем которых намного больше объема исходных продуктов реакции. Кристаллы этих соединений, увеличиваясь в объеме, давят на стенки пор, вызывая большие внутренние напряжения и растрескивание батона.

Наиболее ярко коррозия этого вида проявляется при действии на цементный камень сульфатных вод (сульфатная коррозия). Вероятность сульфатной коррозии учитывают при строительстве морских гидротехнических сооружений, возведении фундаментов зданий в районах, где грунтовые воды содержат сульфаты натрия или кальция. В этих случаях применяют сульфатостойкий портландцемент.

Как получить цементное тесто

ВОДОПОТРЕБНОСТЬ. Указанные процессы твердения портландцемента могут протекать при определенном количестве воды. Для прохождения химических реакций необходимое количество воды колеблется в пределах 15-18 % от веса цемента, однако с точки зрения технологии производства работ такого количества воды недостаточно, чтобы получить пластичное тесто, которое можно было бы уложить в дело. Поэтому на практике к цементу добавляют больше воды, нежели это требуется для химических реакций.

Естественно, что излишняя вода будет испаряться и образовывать в затвердевшем цементном камне поры тем больше, чем больше будет несвязанной воды в тесте или растворе, а это, в свою очередь, будет сказываться отрицательно на прочности материала. Как видно, здесь возникает два противоречия: с одной стороны, чтобы получить тесто с высокой пластичностью, удобное в работе, необходимо большее количество воды, с другой стороны, чтобы была высокая прочность структуры, следует брать меньшее количество воды. В связи с этим практически берется такое оптимальное количество воды, чтобы удовлетворить этим двум условиям.

Это количество воды для цемента определяется показателем «нормальная густота» цементного теста. «Нормальная густота» цементного теста — это такое состояние теста с оптимальным содержанием воды, при котором пестик стандартного прибора погружается в него на определенную глубину (точнее, не доходит до пластинки на 5-7 мм). Ряд свойств цемента определяется на тесте «нормальной густоты», что служит одновременно и для сравнимости результатов испытаний. Нормальная густота цементного теста выражается в процентах и для портландцемента находится в пределах от 25 до 28 %.

Твердение цемента сопровождается изменением его объема. Если процесс протекает на воздухе, то происходит усадка за счет испарения воды, а при твердении в воде происходит обратное явление — набухание. Особенно опасна усадка, в результате которой в отвердевшем бетоне или растворе могут появляться трещины. Для предупреждения усадочных деформаций твердение бетона, особенно в первый период, должно проходить во влажных условиях. Если вода испарится, то твердение цемента практически прекращается.

СРОКИ СХВАТЫВАНИЯ. По сути, это технологическое свойство, которое характеризует период коллоидации цементного теста при твердении. В этот период тесто начинает терять свою пластичность (удобоукладываемость). В практике строительства, чтобы уложить бетонные или растворные смеси с наименьшими затратами труда, сделать это необходимо до потери цементным тестом его пластических свойств. Различают начало схватывания и конец.

За начало принимается время от момента затворения цемента водой до того момента, когда игла стандартного прибора не доходит до пластинки при испытании на 1-2 мм. Обычно это время наступает для портландцемента не ранее 45 мин. Конец схватывания характеризуется временем от момента затворения до того времени, когда игла будет входить в тесто не более 1 мм. Это время согласно стандарту должно наступать не позднее 10 ч.

Читать еще:  Как взрывается цементная пыль

На сроки схватывания могут оказывать влияние различные факторы. Так, например, с понижением температуры окружающей среды сроки схватывания замедляются, а при повышении — наоборот. Количество воды затворения также оказывает замедляющее действие на сроки схватывания при ее увеличении. Замедление схватывания происходит при введении в цемент пластифицирующих и гидрофобных добавок. Добавки же ускорители твердения, напротив, сокращают сроки схватывания.

ВОДОУДЕРЖИВАЮЩАЯ СПОСОБНОСТЬ. При затирании цемента водой можно наблюдать, что некоторые цементы полностью удерживают воду в период схватывания, у других же отделяется небольшой слой разной толщины. Если учесть, что водоцементное отношение (В/Ц) в бетонах всегда превышает установленное при определении нормальной густоты цементного теста, то станет ясно, что величина водоотделения может быть значительной. От него во многом зависит однородность бетона и сцепление раствора с крупным заполнителем.

При послойной укладке бетона в верхней части слоев будет скапливаться большое количество свободной воды, что приведет к неоднородности бетона по толщине и как следствие — неравномерной прочности, явлению нежелательному, особенно проявляющемуся в массивных сооружениях. Кроме того, сцепление между слоями такого бетона будет пониженным. Испарения этой воды из бетона вызывают дополнительное образование пор, способствующих диффузии агрессивной воды вглубь бетона.

Уменьшение водоотделения может быть достигнуто за счет введения в цемент при помоле клинкера гидравлических добавок (трепелы, опоки и др.) и поверхностно-активных веществ (сульфитно-спиртовая барда (ССБ) и др.).

Следует отметить, что водоотделение в цементах иногда играет положительную роль. Например, при уплотнении тонкостенных конструкций методом вакуумирования или изготовлении железобетонных труб методом центрифугирования.

РАВНОМЕРНОСТЬ ИЗМЕНЕНИЯ ОБЪЕМА. При твердении цементных образцов происходят различные изменения их объема. Как было сказано ранее, если образцы твердеют на воздухе, то появляется воздушная усадка, а при твердении в воде, наоборот, происходит набухание. Впрочем, эти явления практически не вызывают неравномерного изменения объема образцов. Другое дело, когда в цементе содержится много свободной извести, которая находится в состоянии пережога и вызывает при гидратации искривление поверхности образцов и появление в них волосяных трещин.

Неравномерность изменения объема цемента может также вызываться наличием в цементе зерен периклаза (оксида магния), а также большого количества добавки гипса. Следует отметить, что проявление неравномерного изменения объема при твердении цемента частично устраняется при выдерживании клинкера на складе перед помолом. Кроме того, неравномерность снижается или вовсе исчезает при введении в портландцемент активных гидравлических добавок.

ПРОЧНОСТЬ ПОРТЛАНДЦЕМЕНТА. До сих пор мы говорили о процессах, происходящих при твердении портландцемента, тем не менее, строителя в основном интересует вопрос прочности в абсолютных единицах и изменение ее во времени.

Прочность портландцемента характеризуется маркой цемента, которая оценивается пределами прочности при сжатии и изгибе. По этим двум показателям цемент разделяется на марки. Марка цемента устанавливается по пределу прочности при изгибе образцов балочек 4 х 4 х 1 6 см и при сжатии их половинок, изготовленных из пластичного раствора состава 1 : 3 (одна часть цемента и три части нормального песка по массе) и хранившихся во влажных условиях при температуре 20±3 °С до момента испытания в течение 28 суток.

Фактический предел прочности при сжатии в возрасте 28 суток называется активностью цемента. По стандарту портландцемент выпускается четырех марок: 400, 500, 550 и 600, для которых установлены определенные пределы прочности при сжатии и изгибе.

СТОЙКОСТЬ ПОРТЛАНДЦЕМЕНТА ПО ОТНОШЕНИЮ К ДЕЙСТВИЮ ВОД, СОДЕРЖАЩИХ АГРЕССИВНЫЕ ВЕЩЕСТВА, или коррозия поортландцеменьного кам. Открытие портландцемента способствовало бурному строительству гидротехнических сооружений, однако вскоре было замечено, что бетонные сооружения на основе портландцемента стали разрушаться, разрушался цементный камень. Этот вид разрушений был назван «коррозией портландцементного камня», которая происходила при действии на бетон различных вод. Большие исследования по выявлению причин коррозии и разработке мероприятий по борьбе с ней были проведены французом Ле Шателье, немецким ученым Михаэлисом и русским В. М. Москвиным. По предложению проф. В. М. Москвина коррозия портландцементного камня разделена на три вида:
1) разрушение цементного камня пресными проточными водами;
2) разрушение в кислой среде;
3) разрушение минерализованными водами (морская среда).

Разрушение цементного камня в проточной воде происходит при фильтрации воды через поры камня, которая растворяет и вымывает гидроксид кальция из камня, делая последний сильно пористым телом с резким понижением прочности цементной связки в бетоне.

Образование в цементном камне гидроксида кальция — основной сотставляющеи воздушной извести — происходит в результате гидролиза пригидратации C3S и C2S по реакциям:
2(3CaO·SiО2) + 6Н2О = 3CaO·2SiО2·3H2О + 3Ca(OH)2.
2(2CaO·SiО2) + 4Н2О = 3CaO·2SiО2·3H2О + Са(ОН)2.
Если учесть, что в портландцементе суммарное содержание C3S и C2S в среднем колеблется около 60 %, то содержание гидроксида кальция в цементном камне будет составлять около 25 % по массе, т. е. четверть всей массы цементной связки бетона, поэтому и неудивительно, что бетон может в результате выщелачивания прийти в негодность.

Внешне проявление первого вида коррозии заключается в появлении на поверхности бетона белого налета в виде высолов. Профессор В. П. Скрыльников в связи с этим удачно назвал этот вид коррозии — «белая смерть цемента».

Проявление выщелачивания извести из камня можно определить и обработкой поверхности фенолфталеином, в результате чего обработанная поверхность окрасится в малиновый цвет. — Наиболее эффективным способом борьбы с этим видом коррозии является использование для бетонов специальных видов цементов, содержащих активные минеральные добавки, например пуццолановый цемент и др.

Второй вид коррозии может проявляться в различных формах. В виде общекислотной, углекислотной, магнезиальной, органо-кислотной коррозии и коррозии под действием минеральных удобрений. Общим для этого вида разрушений является то, что различные кислоты, вступая во взаимо действие с продуктами гидратации цемента, образуют водорастворимые соли, которые еще легче растворяются и вымываются из цементного камня, чем гидроксид кальция.

Остановимся подробнее на углекислотной коррозии и коррозии от минеральных удобрений как наиболее распространенных и опасных.

Углекислотная коррозия возникает в основном от действия углекислоты воздуха, содержание которой значительно превышает другие виды кислот. При затвердевании бетона до проектной прочности на воздухе углекислота, содержащаяся в воздухе, взаимодействует с гидроксидом кальция, переводя последний в карбонат кальция. То же самое может происходить и в затвердевшем бетоне при эксплуатации в водах, содержащих углекислоту (например, в болотистых или грунтовых). В дальнейшем при изменении концентрации углекислоты в среде работы бетона происходит процесс взаимодействия карбоната кальция с углекислотой по реакции СаСО3 + СО22О = Са(НСО3)2 с образованием соли кислого углекислого кальция, которая еще легче растворяется и выщелачивается, чем сам гидроксид кальция. Примером такого разрушения бетона может служить случай с малым искусственным дорожным сооружением в Улан-Удэ, пришедшим в негодность после годичной
эксплуатации.

Если учесть, что в бетонах возможно использование и заполнителей из карбонатных пород, то создаются дополнительные условия для образования легкорастворимой соли, и тогда применение только специальных цементов в бетонах не обеспечит надежной защиты от разрушения. Необходимым в этом случае будет дополнительная обработка поверхности бетона водозащитными слоями, например, пропитка битумными или полимерными составами поверхностных слоев бетона, соприкасающихся с агрессивной средой.

Теперь о коррозии под действием минеральных удобрений. Из всех видов минеральных удобрений наиболее вредными являются аммиачные удобрения — аммиачная силитрат и сульфат аммония, которые в своем составе содержат нитрат аммония NH4NO3, который действует на гидроксид кальция по реакции
Са(ОН)2 + 2NH4NO3 + 2Н2О = Ca(NО3)2·4H2О + 2NО3,
образуя нитрит кальция, хорошо растворимый в воде и легко вымываемый
из бетона.

Третий вид коррозии портландцементного камня наблюдается при действии грунтовых вод, содержащих минеральные соли, или в морской воде. Этот вид коррозии часто называют сульфатной коррозией, т. к. морская вода содержит в своем составе обязательное количество сернокислых соединений типа RSO4. Сульфатные соединения вступают в реакции с гидроксидом кальция, образуя сернокислый кальций по уравнению RSО4 + Са(ОН)2 = CaSО4 + R(OH)2.

Сернокислый кальций помимо образования по реакции непосредственно может содержаться как в морских, так и в грунтовых водах. При насыщении пор цементного камня водой, насыщенной сернокислым кальцием, последний вступает во взаимодействие с С3АН6, образуя гидросульфоалюминат кальция по следующей реакции:
3CaSО4 + ЗСаО·А12О3·6Н2О + 25Н2О = 3CaO·Al2О3·3CaSО4·31H2О.

Образуясь в порах цементного камня, это соединение при определенных пределах концентрации переходит в перенасыщенное состояние и начинает выкристаллизовываться: при этом увеличивается в объеме в 3,0-3,5 раза, создает большие давления на стенки пор, разрушает цементный камень. Образующиеся кристаллы гидросульфоалюмината кальция по виду напоминают бациллу, что и дало название этому виду коррозии — «цементная бацилла».

Третий вид коррозии является наиболее опасным, т.к. разрушение бетона происходит сразу по всему объему изделия. Примером разрушения от действия минерализованных вод может служить Баку — Шолларский водопровод протяженностью 182 км, построенный в 1917 г. В результате воздействия грунтовых вод, содержащих большое количество сульфата кальция, 147 км его уже в 1925 г. полностью вышло из строя.

Поскольку причиной разрушения в цементном камне является наличие гидроксида кальция и трехкальциевого гидроалюмината, то, казалось бы, — убрать эти соединения из цемента и этим решится вопрос коррозии сам по себе. Тем не менее, практически этого добиться невозможно, т. к. это повлекло бы за собой полное отсутствие C3S. Поэтому наука пошла по другому пути в борьбе с коррозией, а именно по пути, как указывалось раньше, создания специальных видов цементов, стойких против указанных видов коррозии. К таким цементам относятся пуццолановый и сульфатостойкий портландцементы.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector