Zagorod50.ru

Загород №50
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Растекаемость цементного раствора это

ИЗУЧЕНИЕ СВОЙСТВ ТАМПОНАЖНЫХ РАСТВОРОВ МОДИФИЦИРОВАННЫХ ХЛОРИДАМИ МЕТАЛЛОВ

Саттаров Ш. М. 1 , Баратов Ш. Ф. 2 , Хайдаров Ш.А. 3 , Абзалов А. А. 4 , Перлова А. С. 5

1 Бакалавр кафедры «Бурения нефтяных и газовых скважин», 2 бакалавр кафедры «Бурения нефтяных и газовых скважин», 3 магистр кафедры «Бурения нефтяных и газовых скважин», 4,5 бакалавр кафедры «Геология и разведка нефтяных и газовых месторождений», Уфимский государственный нефтяной технический университет

ИЗУЧЕНИЕ СВОЙСТВ ТАМПОНАЖНЫХ РАСТВОРОВ МОДИФИЦИРОВАННЫХ ХЛОРИДАМИ МЕТАЛЛОВ

Аннотация

В статье проводилось изучение свойств тампонажных растворов модифицированных хлоридами металлов. Поскольку конечной целью бурения скважин является создание долговечного и прочного изолированного канала, который связывает продуктивный пласт и дневную поверхность, то изучение свойств современных тампонажных растворов является актуальной темой, полностью не изученной до сегодняшнего дня. Стоит отметить, что при проводке скважин решающее значение имеют тампонажные материалы, которые используют для крепления стенок скважин и разобщение пластов. Основой использования тампонажных растворов для цементирования является их способность к структурообразованию и твердению. Требования к тампонажным материалам для цементирования нефтяных и газовых скважин в основном определяются геолого-техническими особенностями их проводки, которые также были изучены в представленной статье.

Ключевые слова: тампонажный раствор, модификаторы, понизители водоотдачи, цементный камень, замедлители сроков схватывания.

Sattarov Sh.M. 1 , Baratov Sh.F. 2 , Khaidarov Sh.A. 3 , Abzalov A. A. 4 , Perlova A.S. 5

1 Bachelor of the Department of “Oil and Gas Wells Drilling”, 2 Bachelor of the Department of “Oil and Gas Wells Drilling”, 3 Master’s Degree Student of the Department of “Oil and Gas Wells Drilling”, 4,5 Bachelor of the Department of “Geology and Oil and Gas Field Exploration”, Ufa State Oil Technical University

STUDY OF THE PROPERTIES OF BACKFILL SOLUTIONS MODIFIED BY METAL CHLORIDE

Abstract

The following article discusses the properties of oil-well slurries modified with the help of metal chloride. As the ultimate goal of drilling wells is the creation of a durable and strong isolated channel that connects the productive layer and the day surface, the study of the properties of modern oil wells is a relevant topic that has not yet been fully explored. It should be noted that when drilling wells, cementing materials used for fixing the walls of wells and separation of beds are crucial. The basis for the use of cementing slurry is their ability to structure and harden. Requirements for oil wells for cementing oil and gas wells are mainly determined by the geological and technical features of their wiring, which were also studied in the presented article.

Keywords: cementing slurry, modifiers, fluid loss reducers, cement stone, retarders of setting time.

Важное значение тампонажных растворов при подводке скважины обуславливается тем, что от их возможности функционирования в различных технических ситуациях зависят эксплуатационные свойства скважины, а также ход буровых работ. Ввиду этого, целесообразность затрат на изучение физико-химических свойств тампонажных систем очевидна. Одним из способов управления свойствами тампонажных материалов является введение модифицирующих добавок. Такие добавки стали предметом исследования ряда научных работ [6, С.30], [9, С. 25-31], [10, С. 215]. К ним относят пластифицирующие добавки, понизители фильтрации, расширяющие добавки, исключающие усадку цементного камня. К числу новых материалов с заданными свойствами относят и комплекс-ионные – вещества, образующие прочные соединения с катионами поливалентных металлов. К более доступным добавкам относят соли металлов, каустическую соду и другие реагенты.

Разработка месторождений нередко сопровождается особыми геологическими условиями, в частности, месторождения Сибири, характеризующиеся низкими температурами пород, настаивают на поиске новых материалов со специфическими свойствами, позволяющими облегчить ведение буровых работ в осложненных условиях. Для разобщения продуктивных пластов в литературе описаны эффективные материалы на основе минеральных вяжущих веществ [7, С. 46–52], [8, С.62].

Тампонажная система представляет собой сложный дисперсный объект исследования. Данный раствор при низкой температуре остается в жидком состоянии до 10 часов и более, что приводит к большой усадке раствора (до 30 и более метров) и ухудшению качества сцепления цементного камня с колонной и стенкой скважины. Ускорители твердения в данном случае играют немаловажную роль, помогая повысить качество крепления верхних интервалов скважин. Однако, в условиях экспрессного затвердевания раствора существует риск того, что система не наберет нужную для работы прочность.

В ходе изучения свойств тампонажных растворов в качестве сырьевого материала был использован цементный раствор на основе ПЦТ I-50 при водно-цементном отношении, равном 0,5, в качестве базовых компонентов растворов выбраны следующие реагенты в различных концентрациях: хлорид натрия, хлорид кальция и хлорид железа (III). Согласно ГОСТ 26798.1-96 «Цементы тампонажные. Методы испытаний» [3], [5, С. 369] выбранный материал отдельно и с вводимыми реагентами различных концентраций был рассмотрен по следующим показателям: растекаемость, плотность цементного теста, время загустевания, водоотделение, а также прочность цементного камня на изгиб и сцепление цементного кольца с наружной поверхностью.

На рис. 1 представлена зависимость растекаемости от концентрации вводимой добавки соли, из которого видно, что наилучший результат из представленных показывает добавка хлорида натрия. Растекаемость тампонажного раствора увеличивается с возрастанием количества хлорида натрия до 2%. В точке 230 мм график имеет максимум и при дальнейшем росте концентрации, растекаемость уменьшается вплоть до первоначального значения.

Рис. 1 – Зависимость концентрации соли от растекаемости

Важной задачей является снижение водоотделения цементов. После того как затворился цемент, в первые часы почти вся вода (за исключением 1-2%) является химически не связанной с цементными частицами, и в цементе удерживается только благодаря силе поверхностного натяжения, а также благодаря адсорбированному действию цемента по отношению к ней [5, с. 60]. Но, когда часть воды отделяется от цементного раствора, то очень быстро изменяются условия формирования цементного камня, а также это касается и физико-механических свойств и самого камня. Если непрерывно из цементного раствора удалять непрерывно выделяющуюся воду, то в цементном камне появятся трещины, и он будет пористым. Стоит также отметить такую особенность, что у цементного камня механическая прочность в 3-4 раза меньше прочности цементного камня, который затвердел при нормальных условиях. Из-за того, что он потерял большое количество воды, значительно изменяются свойства цементного раствора. Схватывается цементный раствор и твердеет камень неравномерно. Это, естественным образом, отражается и на физико-механических свойствах самого камня. На рис. 2 видно, что наиболее удовлетворительный результат с точки зрения водоотдачи показала добавка хлорида железа (III) в количестве 3% от массы цемента.

Рис. 2 – Водоотделение раствора в зависимости от концентрации добавки

Одна из важнейших характеристик тампонажных растворов – плотность. Поддержание заданной и равномерной плотности – одно из основных технологических требований [2, С. 429]. Колебания данного показателя свидетельствуют об изменениях его водоцементного отношения, что вызывает изменение других его свойств – прокачиваемости, загустевания, прочности и т. п. Слишком большие изменения плотности считаются нарушением технологического режима процесса и могут привести к осложнениям. Уменьшение плотности утяжеленных тампонажных растворов по сравнению с заданной вызывает разжижение раствора, выпадение утяжелителя, выход из строя насосов, образование непродавливаемых пачек из выпавшего утяжелителя в обсадной колонне. Одним из методов получения раствора с плотностью выше нормальной является увеличение плотности жидкости затворения за счет добавок солей (рис. 3).

Введение хлорида кальция в количестве 3% повышает плотность цемента до 1,928 г/см 3 , хлорида натрия – до 1,919 г/см 3 , хлорида железа (III) – до 1,914 г/см 3 .

Рис. 3 – Зависимость плотности раствора от концентрации добавки

Известно, что хлорид натрия обеспечивает хорошее сцепление цементного камня с отложениями солей и набухающими глинами [4]. Добавка хлорида натрия в количестве 2% от массы цемента приводит к значительному повышению прочности раствора (рис. 4). Также происходит рост в показателях сцепления цементного кольца со стенками скважины.

Рис. 4 – Зависимость прочности и сцепления раствора от концентрации хлорида натрия

При твердении цементных растворов при пониженных температурах основной проблемой является снижение скорости твердения. Температура играет важную роль в процессе твердения. Снижение температуры ниже 5 о С существенно замедляет скорость твердения, а при температурах ниже 0 о С твердение может прекратиться из-за замерзания жидкости затворения [1, С. 245].

Применительно к креплению скважин в зонах многолетнемерзлых пород (ММП) это может привести к серьезным последствиям. В частности, в незатвердевшем цементном растворе, находящемся в затрубном пространстве скважины в неподвижном состоянии, могут происходить негативные процессы, основными из которых являются седиментация и водоотделение, нарушающие герметичность затрубного пространства.

Читать еще:  Сырье цемент производство клинкер

Наиболее простой способ, препятствующий замерзанию жидкой фазы и ускорителей схватывания и твердения — это добавление в воду затворения солей. В то же время наличие значительных количеств хлоридов в цементном растворе может привести к коррозии обсадной колонны.

Сравнение времени загустевания тампонажного раствора с добавкой хлорида натрия в количестве 3% от массы цемента и без добавки показывает, что введение хлорида натрия приводит к значительному сокращению времени загустевания. Цементный раствор на основе ПЦТ I-50 при В/Ц, равном 0,5 при температуре 22 о С загустевает при перемешивании в атмосферном консистометре до консистенции 30 единиц по Бердену за 5 часов, в то время как тампонажный раствор затворенный на 3%-ном растворе NaCl достигает консистенции 30 единиц по Вердену за 3 часа 20 минут (рис. 5).

Рис. 5 – Кривая загустевания раствора с добавкой NaCl

Таким образом модификаторы хлориды натрия и кальция следует вводить в раствор при буровых работах, проводимых в условиях низких температур (условия мерзлоты) и при необходимости в увеличенной растекаемости раствора. Целесообразнее применять хлорид натрия в качестве модифицирующей добавки в концентрации 2% от массы цемента, хлорида кальция – в концентрации 3% от массы цемента. Именно в таких содержаниях данные добавки наиболее действенны для поставленных целей.

В случае необходимости увеличения времени загустевания, добавку хлорид натрия следует применять в количестве 3%, учитывая сопутствующие влияния соли на физико-химические свойства раствора.

Модификатор хлорид железа (III) по большей части не выделяется среди двух других солей по влиянию на тампонажный раствор, однако данный модификатор показывает удовлетворительные результаты в качестве понизителя водоотдачи.

Список литературы / References

  1. Агзамов Ф.А., Измухамбетов Б.С., Токунова Э.Ф. Химия тампонажных и промывочных растворов // Недра. – М., 2011. – С. 245.
  2. Булатов А.И., Макаренко П.П., Проселков Ю.М. Буровые промывочные растворы // Недра. – М., 1999. – С. 429.
  3. ГОСТ 26798.1-96 «Цементы тампонажные. Методы испытаний» [Электронный ресурс] URL: http://www.internet-law.ru/gosts/gost/8996/ (дата обращения: 09.07.2017).
  4. Исследования и опыт применения тампонажных растворов с добавкой солей хлоридов при цементировании кондукторов на арланском месторождении РБ [Электронный ресурс] URL: http://novator-ufa.ru/publikacii/29-issledovanija-i-opyt.html (дата обращения: 09.07.2017)
  5. Овчинников В.П., Аксенова Н.А., Овчинников П.В. Физико-химические процессы твердения, работа в скважине и коррозия цементного камня: Учеб. пособие для вузов // Нефтегазовый университет. – Тюмень, 2007. – С. 369.
  6. Перейма А.А. О влиянии химической обработки тампонажных растворов на эффективность действия расширяющих добавок / А.А. Перейма, Ю.С. Минченко, С.Г. Трусов // Строительство нефтяных и газовых скважин на суше и на море – 2011. – №5. – 27 – С. 30.
  7. Петров В.С. Регулирование свойств тампонажного раствора – камня с помощью добавок аминометиленфосфоновых комплексонов/ В.С. Петров // Нефтегазовое дело – 2012. – №6. – С. 46–52.
  8. Регулирование свойств тампонажных растворов с помощью многофункциональных химреагентов /Мариампольский Н.А. и др. //Техника и технология бурения скважин: обз. инф. /ВНИИОЭНГ. М.:1988. С. 62.
  9. Самакаев Р.Х., Дытюк Л.Т. Применение комплексонов в нефтяной промышленности. //Нефтяное хозяйство. – М., 1995. – С. 25-31.
  10. Штэпа И.В. Обоснование и разработка технологии крепления стенок разведочных и технических скважин в сложных условиях методом струйной цементации: дис. канд. тех. наук : 25.00.14 : защищена 29.12.2015 / Штэпа Иван Владиславович. – М., 2002. – С. 215.

Список литературы на английском языке / References in English

Свойства цементных растворов и цементного камня

С точки зрения гарантии успешности бурения наиболее часто определяют следующие свойства цементов:

1) плотность, ρ, кг/м 3 ;

2) растекаемость, мм;

3) начало схватывания, час, мин.;

4) конец схватывания, час, мин.;

5) предел прочности на изгиб, σИ, кгс/см 2 ;

6) равномерность изменения объёма, да/нет;

7) тонкость помола, да/нет;

8) содержание вредных примесей, %

Свойства цементных растворов прямо зависят от водоцементного отношения ВЦО, которое соответственно определяется как отношение массы затворённой воды mВ к массе цемента mЦ:

Обычно у портландцементов свойства определяют при ВЦО = 0,5. Если ВЦО будет меньше 0,5, то плотность цементного раствора увеличится, а скорость схватывания уменьшится. Это важно для присмотра за оперативным расходом цемента. Имеется в виду, что обычная плотность буровых тампонажных растворов от строительных портландцементов равна 1,65 г/см 3 , а заявленная их плотность обычно равна 1,85 г/см 3 , то есть с меньшим ВЦО. И если, без соответствующей лабораторной проверки, при цементировании не экономят цемент для оперативных производственных надобностей, а делают плотность цемента равной проектной, то ретивые исполнители часто получают козла.

Для исследования свойств цементов количество цементного порошка и воды затворения рассчитывают следующим образом. Например, если ВЦО = 0,4, то это значит, что для замеса цементного раствора надо взять четыре массовых части воды и десять массовых частей цементного порошка, а всего четырнадцать массовых частей. То есть, например, на четыре килограмма воды надо взять десять килограмм цементного порошка. Или, четыреста грамм воды надо смешать с одним килограммом цемента.

Если, например, требуется сделать один литр цементного раствора с ВЦО = 0,5 и плотностью ρЦР = 1,65 г/см 3 , то всего надо взять всего 1650 г воды и цементного порошка. Причём в этой массе всего будет 5 частей воды и 10 частей цемента. А на одну часть будет приходиться массы 1650 / (5+10) = 110 г. Отсюда следует, что для образования одного литра цементного раствора надо взять 5 × 110 = 550 г воды и 10 × 110 = 1100 г цемента.

Плотность.

Плотность цементного раствора определяется аналогично плотности промывочной жидкости в пункте 6.2.1.

Растекаемость.

Идея растекаемости заключается в том, что цементный раствор при цементировании, поднимаясь снизу вверх по затрубному пространству ОК, под действием силы тяжести этой более плотной жидкости, чем промывочная, должен достаточно хорошо растекаться на стороны, чтобы хорошо заполнять каверны в стенках скважины. В результате чего должен получаться непроницаемый тампонаж затрубного пространства ОК, независимо от режимов цементирования, всяких там ламинарных, турбулентных или структурных. Но это для дополнительного образования. Однако при этом надо не забывать, что растекаемость цементного раствора в скважине лучше при большем времени цементирования.

Растекаемость цементного раствора определяется на приборе конус АзНИИ (Рисунок 76), названного в честь Азербайджанского научно-исследовательского института. Он представляет из себя усечённый конус, объёмом 120 см 3 .

Определение растекаемости производится по следующей последовательности. Конус устанавливают посередине на горизонтально поставленный диск с концентрической шкалой и пузырьковым прибором определения горизонтальности посредине. Этот диск есть не конус, а диск, несмотря на то, что на нём написано, что он есть конус (КР-1). Затем приготавливают соответствующее количество цементного раствора, который перемешивают в течение двух минут с момента затворения цемента с водой. Затем наполняют цементным раствором конус заподлицо (за под лицо). Излишек цементного раствора срезается ровным предметом, и затем конус рукой поднимается вверх. Средний диаметр растёкшейся при этом цементной лепёхи и есть величина растекаемости. Растекаемость должна быть не меньше 180 мм.

Рисунок 76. Конус АзНИИ, он же конус растекаемости КР-1

Начало схватывания.

Начало схватывания есть промежуток времени от момента начала затворения цементного порошка в воде до момента начала схватывания этого цементного раствора.

Момент времени начала схватывания определяют на приборе игла Вика (Рисунок 77). Этот прибор оборудуется привинчиваемой иглой 1 диаметром 1,1. Игла привинчивается вместо привинчиваемого пестика 2, который используется для определения нормальной густоты цементного теста. Прибор имеет давящий груз 2, массой 300 г. При этом в сборный стакан 3 с подложкой 4 наливают 300 мл цементного раствора и производят ОЗЦ. В течение этого времени несколько раз, через заданные промежутки времени, иглу подводят до поверхности цемента и отпускают под действием груза. Укол теста производят каждый раз в новое место. Моментом начала схватывания считается момент времени, при котором игла Вика не доходит до дна стакана 1÷2 мм. Это определяют по шкале 6.

Рисунок 77. Игла Вика ИВ-2

Конец схватывания.

Определяется аналогично началу схватывания. Моментом конца схватывания считается момент, когда игла Вика может только воткнуться в цемент на 1÷2 мм.

ГОСТ 26798.1-85 Цементы тампонажные. Методы определения растекаемости, плотности, водоотделения, времени загустевания и сроков схватывания

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Читать еще:  Как взрывается цементная пыль

ЦЕМЕНТЫ ТАМПОНАЖНЫЕ
Методы определения растекаемости, плотности, водоотделения,
времени загустевания и сроков схватывания

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО ДЕЛАМ СТРОИТЕЛЬСТВА

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения растекаемости, плотности, водоотделения, времени загустевания и сроков схватывания

Oil-well cements. Test methods of flowability, density, water-el: mination, thickening time and setting time

Постановлением Государственного комитета СССР по делам строительства от 12 декабря 1935 г. № 230 срок введения установлен

Настоящий стандарт распространяется на все виды тампонажных цементов и устанавливает методы испытаний для определения растекаемости, плотности, водоотделения, времени загустевания и сроков схватывания цементного теста.

1. ОПРЕДЕЛЕНИЕ РАСТЕКАЕМОСТИ

Чаша, лопатка по ГОСТ 310.3-76.

Мешалка для перемешивания цементного теста по СТ СЭВ 3920-82 (п. 4.1). Допускается применение мешалки по черт. 1 со скоростью вращения лопастного устройства (1500±100) мин -1 , объемом перемешиваемого раствора в стакане цилиндрической формы от 500 до 900 см 3 .

Допускается применение мешалок иной конструкции, обеспечивающих получение однородного цементного теста при времени перемешивания (180±5) с.

Измерительный столик, установленный горизонтально по уровню, снабженный шкалой, представляющей собой концентрические окружности с минимальным диаметром 70 мм и максимальным не менее 250 мм. Цена деления шкалы должна быть не более 5 мм. Столик должен быть покрыт стеклом.

Линейка с погрешностью ±1 мм по ГОСТ 427-75.

Испытательное оборудование и средства измерений должны подвергаться поверке в соответствии с обязательным приложением.

1.2. Проведение испытаний

1.2.1. Форму-конус устанавливают на стекле в центре измерительного столика таким образом, чтобы внутренняя окружность формы совпадала с начальной окружностью шкалы столика. Внутреннюю поверхность конуса и стекло перед испытанием протирают влажной тканью.

1.2.2. Цементное тесто готовят по ГОСТ 26798.0-85.

1.2.3. Готовым цементным тестом заполняют форму-конус до верхнего торца. Интервал времени от момента окончания перемешивания до момента начала заполнения конуса не должен быть более 5 с. Затем конус резко поднимают в вертикальном направлении.

Мешалка для перемешивания цементного теста

1 — лопастное устройство; 2 — стакан

1.2.4. Диаметр расплыва цементного теста измеряют во взаимно перпендикулярных направлениях металлической линейкой. За значение растекаемости принимают среднее из результатов двух измерений. При этом расхождение между большим и меньшим диаметром не должно быть более 10 мм.

2. ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ

Лабораторные весы общего назначения по ГОСТ 24104-88 или другие весы с пределом взвешивания не ниже 500 г и погрешностью взвешивания не более 1,0 г.

Пикнометр вместимостью (100±0,5) см 3 (черт. 3).

Чаша и лопатка по ГОСТ 310.3-76.

Мешалка для перемешивания цементного теста по п. 1.1.

2.2. Проведение испытаний

2.2.1. Определяют массу чистого сухого пикнометра с погрешностью до 1,0 г.

2.2.2. Цементное тесто готовят по ГОСТ 26798.0-85.

2.2.3. По окончании перемешивания пикнометр заполняют цементным тестом и закрывают крышкой, при этом цементное тесто должно заполнить канал в крышке пикнометра. Избыток теста, выступивший из отверстия в крышке, удаляют влажной тканью.

2.2.4. Массу пикнометра, заполненного цементным тестом, определяют с погрешностью до 1,0 г.

1 — пробка; 2 — стакан

2.2.5. Плотность цементного теста r ц вычисляют с округлением до 10 кг/м 3 по формуле

кг/м 3 , (1)

где т1 — масса пустого пикнометра, г;

т2 — масса пикнометра с цементным тестом, г;

V — вместимость пикнометра, см.

3. ОПРЕДЕЛЕНИЕ ВОДООТДЕЛЕНИЯ

Чаша, лопатка по ГОСТ 310.3- 76.

Мешалка для перемешивания цементного теста по п. 1.1.

2 мерных цилиндра по ГОСТ 1770-74, исполнение 2 или 3, вместимостью 250 мл. с ценой деления не более 2 см 3 .

3.2. Проведение испытаний

3.2.1. Цементное тесто готовят по ГОСТ 26798.0-85.

3.2.2. Цементное тесто заливают в два цилиндра так, чтобы в каждом из них метка 250 см находилась на уровне верхнего края мениска.

3.2.3. Цилиндры оставляют в покое при температуре (20±3) ° С . Через 2 ч измеряют объем отделившейся сверху воды. Разница в отстоях в обоих цилиндрах не должна быть более 0,5 см 3 .

3.2.4. Водоотделение ( W ) в процентах от объема цемента вычисляют с точностью до 0,1 % по формуле

, (2)

где v1 и v2 — объем отделившейся воды соответственно в первом и втором цилиндрах, см 3 .

4. ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ЗАГУСТЕВАНИЯ

Мешалка для перемешивания цементного теста по п. 1.1.

Чаша, лопатка по ГОСТ 310.3-76.

Консистометр КЦ-5 для испытания цементов при низких, нормальных и умеренных температурах.

Консистометр КЦ-3 для испытаний цементов при повышенных и высоких температурах. Допускается применение консистометра КЦ-3 для испытаний цементов при низких, нормальных и умеренных температурах.

Консистометры должны быть прокалиброваны в соответствии с инструкцией к прибору. Схема измерительного узла консистометра приведена на черт. 4.

Допускается применение консистометров иной марки, обеспечивающих получение результатов испытаний, сопоставимых с результатами, полученными на консистометрах КЦ-3 и КЦ-5.

4.2. Проведение испытаний

4.2.1. Цементное тесто готовят по ГОСТ 26798.0-85.

4.2.2. Испытание проводят в соответствии с инструкцией к прибору. Температурный режим и давление — по ГОСТ 26798.0-85.

4.2.3. Частота вращения стакана консистометров КЦ-3 и КЦ-5 должна быть (150±5) мин -1 . Допускается проводить испытания при частоте вращения стакана этих консистометров (60±2) мин -1 .

4.2.4. Временем загустевания цементного теста считают время от начала затворения до момента достижения консистенции 30 единиц консистенции (ед. к) по шкале прибора.

Схема измерительного узла консистометра

1 — лопастное устройство; 2 — стакан

5 . ОПРЕДЕЛЕНИЕ СРОКОВ СХВАТЫВАНИЯ

Мешалка для перемешивания цементного теста по п. 1.1.

Чаша и лопатка по ГОСТ 310.3-76.

Прибор Вика с иглой по ГОСТ 310.3-76.

Кольцо к прибору Вика по ГОСТ 310.3-76.

Подставка к прибору (черт. 5).

Термостат, обеспечивающий соблюдение режима по ГОСТ 26798.0-85. Воду в термостате меняют через каждые 7 сут.

Автоклав, обеспечивающий соблюдение режимов по ГОСТ 26798.0-85, с устройством для определения сроков схватывания. Устройство должно быть снабжено набором стержней с иглами или механизмом для сбрасывания иглы и поворота кольца после каждого измерения. Масса стержня с иглой должна быть (340 ± 2) г. Форма, размеры и состояние иглы должны соответствовать ГОСТ 310.3-76.

Подставка к прибору Вика

* i — толщина стенки кольца Вика

5.2. Определение сроков схватывания цементов для низких и нормальных температур

5.2.2. Кольцо прибора Вика и подставку к нему предварительно смазывают смазочным маслом любой марки (индустриальным или консервационным) или пластичной смазкой любой марки и устанавливают кольцо на подставку.

5.2.3. Цементное тесто готовят по ГОСТ 26798.0-85.

5.2.6. Первое погружение иглы в цементное тесто производят не позднее чем через 1 ч 30 мин после затворения, последующие — через 1 ч 45 мин, 2 ч и 2 ч 15 мин, а в дальнейшем — не реже чем через каждый час.

5.3. Определение сроков схватывания цементов для умеренных температур

5.3.1. Подготовку к испытаниям проводят по пп. 5.2.1 — 5.2.4.

5.3.2. Кольцо Вика накрывают металлической или стеклянной пластинкой и помещают в термостат таким образом, чтобы уровень воды над кольцом был не менее 2 см. Через 1 ч 30 мин кольцо с цементным тестом вынимают из термостата и проводят испытания по п. 5.2.5. Повторные испытания проводят до фиксации начала схватывания через каждые 15 мин, а в дальнейшем не реже чем через каждые 30 мин. После каждого испытания кольцо снова помещают в термостат.

5.4. Определение сроков схватывания цементов для повышенных температур

5.4.1. Цементное тесто готовят по ГОСТ 26798.0-85.

5.4.2. Кольцо устройства для определения сроков схватывания смазывают тонким слоем пластичной смазки любой марки.

Цементное тесто заливают в кольцо устройства для определения сроков схватывания. Закрепляют кольцо в устройстве и помещают его в автоклав, который полностью заполняют рабочей жидкостью согласно инструкции к нему и герметизируют.

5.4.3. Погружать иглы следует в соответствии с программой испытаний. Результаты погружений определяют согласно инструкции по эксплуатации, прилагаемой к устройству для определения сроков схватывания. Интервал времени между последующими погружениями иглы не должен превышать 1 ч.

5.5. Началом схватывания цементного теста считают время, прошедшее от начала затворения до момента, когда игла не доходит до подставки на 1 — 2 мм. Концом схватывания цементного теста считают время от начала затворения до момента, когда игла погружается в тесто на глубину от 1 до 3 мм.

ПРИЛОЖЕНИЕ
Обязательное
ПОВЕРКА ИСПЫТАТЕЛЬНОГО ОБОРУДОВАНИЯ И СРЕДСТВ ИЗМЕРЕНИЙ

1. Поверке подлежат форма-конус, пикнометр, консистометр, автоклав, прибор Вика, устройство для определения сроков схватывания в автоклаве.

Читать еще:  Мешать цемент с опилками для утепления

2. Поверку производят в соответствии с утвержденными методиками с периодичностью не реже одного раза и год.

3. Проверяемые параметры аппаратуры приведены в таблице.

Архив WinRAR_1 / Лекции_ХИМИЯ

Метод основан на измерении показания угла поворота цилиндра вискозиметра при различных скоростях вращения, при увеличении скорости θ УВ , а затем, обратно, при снижении скорости θ УМ . После снятия показаний на разных скоростях определяют статическое напряжение сдвига (СНС) при 3 об/мин после 10 сек и 10 мин состояния покоя

Ротационный вискозиметр имеет три константы:

k 1 — торсионная константа на единицу отклонения, зависит от жесткости пружины

k 2 — константа напряжения сдвига для эффективной площади внутри цилиндра [см -3 ]

k 3 — константа скорости сдвига [сек -1 /об/мин]

Используя эти константы и снимаемые с прибора показания можно рассчитать ряд реологических параметров исследуемого раствора:

Скорость сдвига [сек -1 ] γ=k 3 n Напряжение сдвига [Па] τ= k 1 k 2 θ Вязкость [Па*сек] η=

Для каждой скорости можно вычислить отношение углов закручивания.

то раствор считается неосаждающимся, свойства не зависят от времени при средней температуре теста;

, то раствор считается склонным к осаждению;

, то раствор считается склонным к гелеобразованию;

Для расчета в полевых условиях применяют следующие формулы:

Кажущаяся вязкость [сПз] Пластическая вязкость [сПз] η пл = θ 600 — θ 300

Приблизительное значение динамического напряжения сдвига [Па]

τ 0 =0,479 ( θ 300 — η пл )

Точное значение динамического напряжения сдвига [Па] τ 0 =0,51 (

Где θ 300 и θ 600 — показание вискозиметра при 300 и 600 об/мин соответственно

Растекаемость цементного раствора

В течение времени, пока цементный раствор закачивают в заданный интервал скважины, он должен оставаться легкоподвижным. Растекаемость

— это условная мера подвижности или прокачиваемости свежеприготовленного раствора. Ее измеряют по ГОСТ 26798.1-96 с помощью прибора, называемого КР-1 (конус АзНИИ).

Цементный раствор наливают в конус вровень с верхним торцом. Затем конус без промедления плавно поднимают вверх. Раствор растекается по стеклу, покрывающему шкалу. Средний диаметр круга расплыва цементного раствора характеризует растекаемость раствора.

Цементный раствор считают достаточно подвижным, если его растекаемость равна не менее 18 см. Растекаемость зависит от тонкости помола цемента. Увеличить ее можно повышением водоцементного отношения или введением в раствор реагента-понизителя вязкости (пластификатора).

Консистенция и сроки загустевания цементного раствора

Спустя некоторое время после затворения и механического перемешивания начинает проявляться способность цементных растворов к структурообразованию, которое выражается последовательно в загустевании и схватывании растворов. Время загустевания должно быть несколько больше времени, потребного для приготовления, закачивания и продавливания тампонажного раствора в тампонируемую полость.

Определение сроков загустевания и времени схватывания цементного раствора основано на методе измерения консистенции при создании условий,

приближенных к условиям внутри скважины, с помощью консистометра высокого давления модели CHANDLER 7222. Диапазон изменений давления

– от атмосферного до 154 МПа, диапазон изменения температур – от 0 до 205°С. Консистометр высокого давления CHANDLER 7222 имеет встроенный графопостроитель, который рисует кривые изменения давления, температуры, консистенции.

Сроки схватывания цементного раствора — время теста между моментом запуска температуры и давления на консистометре высокого давления и моментом, при котором консистенция раствора достигает 100 В с .

Сроки загустевания цементного раствора — Время теста между моментом запуска температуры и давления на консистометре высокого давления и моментом, при котором раствор оказывается не прокачиваемым. По спецификации 10А АНИ это время соответствует значению консистенции равном 70 В с , а по ГОСТ 26798.1-96 это время соответствует значению консистенции 30 УЕК.

Примечание: 1Вс=1УЕК=0,1 Па*с=1cPs.

Cроки схватывания цементного раствора

При проведении цементировочных работ необходимо знать срок, в течение которого цементный раствор в условиях данной скважины сохраняет подвижность (прокачиваемость), а также срок, необходимый для превращения раствора в камень. Эти сроки называют соответственно началом и концом схватывания и определяют с помощью прибора Вика путем периодического измерения глубины погружения в образец твердеющего раствора иглы стандартного размера под действием постоянной нагрузки. Промежуток времени от момента затворения до момента, когда игла при погружении в образец не доходит до дна кольца с раствором на 1-2 мм, называют сроком начала схватывания . Промежуток времени от момента затворения до момента, когда игла погружается в раствор не более чем на 1

мм, называют сроком конца схватывания .

Прибор Вика ОГП-1 предназначен для определения сроков схватывания цементного раствора при атмосферном давлении.

Для определения сроков схватывания при температурах до 250°С и давлениях до 100 МПа предназначена установка УС-1М. Также для различных термобарических условий используют ультразвуковой анализатор прочности цементного камня CHANDLER 4262.

Водоудерживающие свойства Седиментационная устойчивость цементного раствора

Под седиментационной устойчивостью подразумевают способность частиц тампонажного раствора удерживаться в жидкости затворения во взвешенном состоянии под действием сил тяжести. Раствор не обладающий удовлетворительной седиментационной устойчивостью, способен в покое расслаиваться на твердую и жидкую фазы, в нем могут образовываться каналы и трещины в различном направлении.

Седиментационную устойчивость цементного раствора оценивают по:

Коэффициенту водоотделения цементного раствора

Седиментации цементного раствора

Водоотделение цементного раствора

В составе цементного раствора всегда присутствует дисперсионная среда и дисперсная фаза. В качестве дисперсной фазы выступает цементный порошок и добавки, нерастворимые в дисперсионной среде. Дисперсионной средой является жидкость затворения. При затворении цементного раствора примерно третья часть жидкости затворения идет на реакцию с компонентами цементного порошка. Остальная часть в виде свободной воды позволяет раствору иметь ту или иную подвижность.

Со временем эта свободная вода может выделяться из раствора, и возможно его расслоение на пачки цемента и воды, образование каналов, по которым поднимается вверх жидкость затворения. В реальных условиях скважины это означает, что по этим каналам и расслоениям в процессе

дальнейшей эксплуатации может поступать пластовый флюид. Таким

образом, прочного надежного сцепления и герметизации в заколонном пространстве скважины мы не получим.

Этот процесс, проходящий в статических условиях, назван

водоотделением , его характеризует коэффициент водоотделения

цементного раствора (n в %).

Методы измерения коэффициента водоотделения основаны на измерении количества (Vв) выделившейся воды из цементного раствора через два часа покоя. Измерения проводят с помощью 500 мл конической колбы (в соответствии со спецификацией 10А АНИ) или 250 мл мерного цилиндра (в соответствии с ГОСТ 26798.1-96)

Коэффициент водоотделения (n в %) для цементного раствора при любом способе тестирования

где Vв — объем выделившейся жидкости, мл

Vцр — объем испытуемого цементного раствора, мл

Чтобы в заколонном пространстве создавался прочный и надежный камень, и была бы обеспечена герметичность крепи, цементный раствор должен выделять не более 2% воды от общего объема раствора. Такое требование предъявляют на цементный раствор все применяемые в мире стандарты и спецификации по техническим условиям и методам испытаниям цементных растворов.

Для снижения количества выделяющейся воды в раствор вводят специальные добавки, связывающие воду.

Седиментация цементного раствора

Для качественной оценки седиментационной устойчивости используются два цилиндра 250 мл, установленные один вертикально, другой под углом 10-15 C. Если цементный раствор седиментационно неустойчив, в нем образуются каналы, трещины или пояса, заполненные дисперсионной средой, причем по каналам дисперсионная среда поднимается вверх, пока не

завершится процесс седиментации. Результатами наблюдений является запись характера изменения структур в течение времени, а также различия в характере изменения структуры столбов растворов в вертикальном и наклонном цилиндрах.

Водоотдача цементного раствора

Вода, выделившаяся из цементного раствора в проницаемый пласт, называется фильтратом цементного раствора. В результате выделения фильтрата изменяются все важные свойства цементного раствора, сокращается срок загустевания, вязкость повышается, уменьшается выход раствора. Если выделение фильтрата происходит в зоне продуктивного пласта, возможно ухудшение коллекторских свойств пласта. Добавки, контролирующие водоотдачу, в большинстве случаев предотвращают выделение большого количества фильтрата из раствора.

В цементных растворах с высокой водоотдачей могут возникать водо- и/или газоперетоки, мгновенное схватывание в результате дегидратации, или повышение вязкости раствора. Последнее неизбежно ведет к повышению давления прокачки и возможно в результате к потере циркуляции.

Специалисты в области цементирования скважин предлагают следующие нормы для количественной оценки водоотдачи, при различных операциях по цементированию.

Таблица 2 — Нормы для количественной оценки водоотдачи

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector